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Transmission of water waves through small apertures 

By D. C .  GUINEY, B. J. NOYE AND E. 0. TUCK 
Department of Applied Mathematics, University of Adelaide 

(Received 27 March 1972) 

The water-wave transmission coefficient for a small slit in a thick vertical barrier 
is obtained theoretically and verified both experimentally and by comparison 
with an exact theory for the case of zero thickness. Similar shallow-water results 
are presented. 

1. Introduction 
The theory of Tuck (1971, hereafter denoted by I) concerns water-wave trans- 

mission through small horizontal slits in a vertical barrier of zero thickness. 
The Auid is supposed inhitely deep and the barrier is impermeable over its 
whole infinite height apart from the single slit. The resulting formula for the 
transmission coefficient predicts that a remarkably high proportion of the 
incident energy is transmitted through quite small slits. 

The present paper is a continuation of the work of I, with the objective of 
verifying the accuracy of I both theoretically and experimentally, and of ex- 
tending the theory to account for finite barrier thickness and shallow-water 
effects. Theoretical confirmation of the approximate theory in I is provided by 
use of recent exact results of Guiney (1972) and Porter (1972) based on the 
general theories of Lewin (1963) and Mei (1966). Comparison of exact and 
approximate results for zero thickness suggests that the small-gap approxima- 
tion remains accurate even up to gap sizes comparable with the mean sub- 
mergence of the slit. 

Experimental confirmation of the theory of I was attempted by a specially 
designed set of experiments. However, the measured transmitted energy was 
low (typically 70 yo) relative to the predictions of I. Although it was suspected 
that dissipation might be the cause of this discrepancy, the problem of accounting 
for non-zero barrier thickness was also considered. 

The extension of the theory of I to incorporate a barrier thickness of the same 
order of magnitude as the (small) gap size is quite straightforward, the formula 
for the transmission coefficient now involving certain elliptic integrals which 
arise from the conformal mapping of the rectangular gap geometry. The predicted 
effect of the wall thickness is a substantial decrease in transmission, and indeed 
the new theory agrees very well with the experimental results, suggesting that 
dissipation is not in fact significant in the present problem. 

Finally a simple theoretical treatment of the corresponding shallow-water 
problem is given. Shallow water in this context means very shallow water, such 
that the incident wavelength is much greater than the water depth. The resulting 
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FIGURE 1. Comparison between exact transmission computations (Guiney 1972, solid line) 
and small-gap theory (Tuck 1971, broken line) for zero wall thickness. 

transmission coefficient is characterized by a single parameter, the blockage 
coefficient of the aperture. This blockage coefficient is independent of wave 
properties, depending only on the geometric shape of the aperture, and may be 
calculated easily for a number of given geometries. Similar problems have been 
discussed by Ogilvie ( 1969). 

2. Comparison of exact and approximate results for zero-thickness 
barriers 

An ‘exact solution’ for the problem of plane water waves incident on a zero- 
thickness vertical barrier containing any number of horizontal slits of any width 
was given by Lewin (1963) and Mei (1966). These theories did not, however, 
enable direct specialization to provide the transmission coefficient for a single 
slit, and Porter (1972) and Guiney (1972) used somewhat different methods to 
solve this special problem. Even for this simple problem the solution for the 
transmission coefficient involves a very complicated numerical integration and 
we refer to the original papers for the details. Our purpose here is merely to 
present some computed results of Guiney (1972) which provide a comparison 
with the small-gap theory of I. 

Figure 1 shows the energy transmission coefficient 1712 as a function of wave- 
length, plotted non-dimensionally as hfh, where h is the depth of submergence 
of the slit. The parameter v is defined as 

v = 2a/h, (2.1) 

where 2a is the width of the slit. The dashed curves (apart from the v = 1 curve) 
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were presented in I and are computed from the small-gap approximation (i.e. for 
small v), whereas the solid curves are obtained by numerical integration using 
the exact formulae of Guiney (1972), valid for arbitrary v. 

When v = 0.05, which describes a very small gap, the results agree to three 
significant figures in the range of the graph. At higher values of v the small-gap 
theory is accurate to about two figures at  frequencies below the maximum of 
transmission and only begins to become inaccurate in the high frequency tails 
of the curves. It is remarkable that even for v = 1, when the width of the slit is 
twice the depth of its upper edge, so that we can hardly call the gap small, the 
small-gap theory is still useful up to and including the point of maximum 
transmission. 

The curve for v = 2 shown corresponds to the case of a submerged barrier, the 
top edge of the gap having moved above the free surface. This problem was 
solved by Dean (1945), and the present results agree accurately with those of 
Dean. Guiney (1972) has also verified Ursell’s (1947) results for a vertical surface- 
intersecting barrier of finite depth, in the limit as the lower edge of the slit 
goes to -00. 

3. Effect of wall thickness 
In  this section we extend the theory of I to account for non-zero barrier 

thickness. We retain the small-gap approximation and the inner and outer flow 
picture as in I. In the outer region, far from the slit, the flow is source-like on one 
side and sink-like on the other side of the barrier, the free surface having a 
significant effect. On the other hand, in the inner region near the slit the free 
surface is assumed to have no effect, and the flow through the slit is obtained 
by conformal mapping. 

For the zero-thickness barrier in I, a Joukowski mapping was sufficient to 
solve the inner problem, but for more general geometries essentially the same 
solution procedure applies, so long as a conformal mapping function which 
transforms the region bounded by the aperture contour into an upper half 
complex plane is known. Once this mapping has been carried out, we can easily 
match the source-like behaviour a t  ‘infinity’ for the inner solution with the 
appropriate outer source solution. 

The specific flow situation of interest is shown in figure 2. The barrier has 
breadth 2b and a gap of size 2a is situated at  mean submergence h below the 
free surface in an infinite depth of water. We define the parameter v as in (2.1) 
and define 

y = b/a 

and assume v to be small, while y = O( 1). We must solve for a velocity potential 
$(x, y, t )  satisfying Laplace’s equation for y < 0 and the linearized free-surface 
condition (see I) on y = 0. 

(3.1) 

The far-field conditions are as in I, namely 

1 (3.2) 

as x - f  -00, and q5 +, ~ [ T A ,  e-ixz+ict] (3.3) 

$ +, &[A, e-ixz+iat + +iKi+iut P A I e  
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FIGURE 2. Sketch of geometry of thick barrier. 

as x - f+co, K = cr2Ig being the wavenumber, A ,  the (arbitrary) incident wave 
amplitude and z = x + i y .  The quantities p and r are complex reflexion and 
transmission coefficients, to be determined. 

Since we are taking y = 0(1) ,  far from the gap a t  distances of O(h) both gap 
size and barrier thickness tend to zero as v -+ 0. Thus the outer problem is 
identical to that for the zero-thickness barrier and the solution of I applies. We 
merely need to extract the information that as we approach the gap we have 

cos rt 
271 $+k- log ( z  + ih) + C*, 

as z -+ O+ + ih, where 

(3.4) 

C+ = cosd-e-2Khsincrt (3.5) 

and 

A and B being real constants to be determined, such that 

C- = - C+ + e--2Kh ( A  cos ct + B sin crt) , 

T = 2 i / ( A  - iB). 

(3.6) 

(3.7) 

In the inner region we suppose that the free surface is too far away to have 
any effect, and hence must solve the problem of streaming flow through a finite 
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rectangular aperture in a wall of thickness 2b in an infinite fluid, the flow being 
source-sink-like a t  infinity. The required mapping is of the Schwartz-Christoffel 
type (Davy 1944) and is defined by 

with branch cuts along the line segments 

1 < pi?</ < E-1. 

Here k is the positive root of 
K'lcP2 - 2K' + 2E' ' = 2(Kk'2- 2E) 

and - CL = u/(ZE - Et2K), 

with = 1 -k2, K' = K(k'), etc. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The functions K ( k )  and E ( k )  are complete elliptic integrals of the first and second 
kind respectively (Abramowitz & Stegun 1964, p. 590). 

The solution for a source of strength m at the origin in the < plane is 

q5 = g [ ( r n / 2 n )  log <+ C] (3.13) 

for some constant C. Now as 6 --f 0 we are looking at  the flow in:the neighbour- 
hood of the point D in both z and <planes (figure 3). In  the 2 plane this corresponds 
to an infinite semicircle on the left-hand side, and hence x -+ - co.bThus from (3.8) 

dzld< + - ia/C2, (3.14) 

so that z+ih --f ia/{ 
and hence as x -+ - 03 

1 m 
277 

. 

Similarly, as 5 -+ 03, we have x + + 03, and 

dz/d< --f iuk, 

z+ ih -+ iakc which implies that 

1 m 
and therefore . 

(3.15) 

(3.16) 

Matching the near-field behaviour (3.4) of the outer solution with the far-field 
behaviour (3.15) and (3.16) of the inner solution gives 

and 

Thus 

m = cos ut, 
cos ut 

277 
c, = c - -log iak 

cos at 
2n 

c- = C+-logia. 

(3.17) 

(3.18) 

cos ut 
277 

c+-c- = - log ( -a%). (3.19) 
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FIGURE 3. Conformal mapping of the inner region. ( a )  z plane, ( b )  5 plane. 

When (3.6) has been solved for C,, (3.19) gives 

(3.20) 2C+ = e-zch ( A  cos d + B sin d) - - log ( - a2k) ,  

from which A and B follow by equating coefficients of cosat and of sinat in 

B = - 2  (3.21) (3.5). Thus 

cos at 
2n 

and 
7r 

(3.22) 

Ei being an exponential integral. Finally, the transmission coefficient 7 follows 
from (3.7), and we have 

(71-2 = 1+[ie2." log(  --$)+$Ei(2Kh)] 2 . 
2n 

(3.23) 

Considering now the limiting case when the width of the barrier tends to 
zero, i.e. y -+ 0, it is clear geometrically and by the properties of the elliptic 
functions that k -+ 1,  and thus (3.11) gives 

-a + $a, (3.24) 

so that IZ 171-z + 1 + [Ge?~hlog-+-Ei(2~h) 1 a 1 -  , 
4h 7r 

(3.25) 
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FIGURE 4. Effect of wall thickness at ( a )  v = 0.15, and ( b )  Y = 0.40. 

which is the solution found in I. Note that the expressions (3.23) and (3.25) 
differ only in the argument of the logarithmic term. 

Figures 4 (a) and ( b )  show computed curvesof 1712 vs. h/h = (1/27r) Kh for various 
values of v and y . Non-zero barrier thickness always reduces transmission relative 
to the zero-thickness results, a t  fixed v and h/h. At very low frequencies the 
exponential integral term in (3.23) dominates and the thickness y has little effect. 
However, a t  and above the frequency of maximum energy transmission the 
effect of y is very pronounced, and the thickness substantially reduces maximum 
transmission. The frequency at which maximum transmission occurs also tends 
to be a little lower for thick barriers. 

A solution can also be obtained (Guiney 1972) in the case when y is large, for 
example when the barrier thickness is as much as the gap submergence: 
2b = O(h) 9 O(2a). It turnsout, however, that theresult (3.23) aboveisuniformly 
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FIGURE 5. Sketch of experimental set-up. 

valid in that it gives the correct limit as y + 00 as well as for y + 0, namely as 
Y+0O 

(3.26) 

which corresponds to k -+ 0 in (3.11). Note that (3.26) implies in the limit y -+ 00 

that at  fixed v and hlh there is no transmission through an infinitely wide barrier, 
as is expected physically. 

Although the results of the present section are only for small gaps (i.e. small v), 
the good agreement shown in the previous section between the small-gap theory 
at  zero thickness and the exact (i.e. finite v) theory gives reason to expect that v 
need not be too small in order that the finite-thickness result (3.23) be useful. 

4. Experimental results 
A series of experiments was carried out in water of depth 70 cm in a flume of 

rectangular cross-section and of length 33 m and width 1.3 m, in the Department 
of Civil Engineering, University of Adelaide. A paddle-type wave maker was 
located near one end, and a vertical barrier of 0.80 cm thick marine plywood was 
fitted about 12 m from the wave maker, dividing the flume into two nearly equal 
parts. The barrier was arranged so that horizontal slits of width either 2.54cm 
or 3.80 ern extending across the full width of the flume could be set with their 
centre-lines at  depths of 10.2 cm, 15.2 cm or 22.9 cm below the mean water level. 
The experimental configuration is shown diagrammatically in figure 5 .  

Incident and transmitted wave amplitudes were measured in the following 
manner using water-level probes potentially accurate to  0.02 cm. The mean 
water level was noted on each probe when the wave maker was adjusted to 
produce waves of a suitable known frequency. The wave maker was then switched 
off and all motion allowed to cease before actual measurements were commenced. 

When the wave maker was switched on again, one observer quickly adjusted 
by eye the water-level probe on the incident side of the barrier so that its tip 
barely touched the top of the passing wave crests. This had to be done after the 
initial transient stage so that pure sinusoidal incident waves were fully developed, 
but before the reflected waves from the barrier began to affect the wave pattern 
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FIGURE 6. Comparison of theoretical (solid lines) and experimental results. (a) v = 0.17: 
0 ,  y = 0.42; A, y = 0.63. ( b )  Y = 0.25: A, 7 = 0.42; 0, = 0.63. 

between it and the wave maker. On the other side of the barrier, a second observer 
carried out the same procedure to  measure the transmitted wave amplitude. 

The wave maker was then switched off, the water in the flume allowed to come 
t o  rest and the process repeated. This time, of course, the probes were already 
set near the top of the wave crests, so a more accurate setting could be made, 
using a vernier scale. After several such runs the instrument settings were finally 
checked by connecting the metal probes to a d.c. power supply with a lamp in 
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FIGURE 7. Sketch of shallow-water transmission problem. 

series; a correctly set probe produced a very brief flash of light as it made only 
momentary contact with the top of the wave. Although time consuming, the 
whole process was repeated up to six times per frequency, until successive readings 
were sensibly identical. 

From the amplitude readings obtained, the energy transmission coefficient 
was calculated, and these results are plotted in figures 6 (a) and (b) .  A qualitative 
conclusion immediately evident, and in agreement with the results of the previous 
section, is that larger values of y (=  barrier thichess/slit width) produce lower 
transmission coefficients, a t  the same values of h/h and v ( =  slit widthlslit 
submergence). 

These experiments were actually carried out at a time when only the theoretical 
results of I for the infinitesimally thick barrier (y  = 0 )  were available, and the 
experimental results appeared to be disappointingly low relative to the theory 
of I .  The assumed reason for this discrepancy was energy dissipation of various 
kinds. Indeed, in some cases jet-like or eddying behaviour was noted in the flow 
through the slit. However, when the theoretical results for the finite barrier 
thickness became available it was soon clear that these apparent anomalies in 
the experimental results were amply explained by taking into account barrier 
thickness. In fact the agreement in figure 6 is sufficiently close to suggest that 
dissipative effects did not significantly affect wave transmission through finite- 
width slits, even in those cases where observation suggested they were present 
to some extent in the local flow through the slit. 

Because the water depth could not exceed 70cm, the first two or three ex- 
perimental points to the left of each graph correspond to wavelengths which 
perhaps exceed the usual criteria for applicability of deep-water theory (e.g. 
‘depth greater than about half a wavelength’). However, the effect on the results 
appears to be quite small. No experiments were performed in truly shallow- 
water conditions (wavelength much greater than water depth), such as those 
assumed in the following section. 

5. Shallow-water theory 
The effects of the bottom on the experimental results of the previous section 

come under the heading of ‘finite-depth’ effects, since they correspond to situa- 
tions where the wavelength and water depth are comparable. A finite-depth 
extension of I is possible, but tedious and numerically complicated, whereas 
a shallow-water theory valid at the other extreme from I when the wavelength h 
is much greater than the depth D is quite straightforward to construct. 

Indeed we can quite easily solve formally for transmission of shallow-water 
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FIGURE 8. Inner problem for shallow-water case, arbitrary geometry of aperture. 
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FIGURE 9. Inner problem for special case of small gap in wall 
of zero thickness in shallow water. 

waves through an aperture or past an obstruction of arbitrary shape and size 
(figure 7) as follows. If h $ D,  shallow-water theory (Wehausen & Laitone 1960) 
requires the velocity potential q5 to satisfy the one-dimensional wave equation 

$tt = gD#x, (5.1) 

in an outer region 1x1 9 D which excludes only the immediate neighbourhood 
of the disturbance. The only acceptable solution possessing sinusoidal time 
dependence is thus the real part of 

where CT = (gD)* k and p and r are the reflexion and transmission coefficients, as 
in (3.3) and (3.4) with A ,  taken as unity without loss of generality. 

The inner expansion of the outer solution ( 5 . 2 )  is (Ixl/D -+ 0 )  

This must match an inner solution valid for x = O(D), in which the free surface 
may be replaced by a rigid wall to leading order. This flow is shown in figure 8 
and represents streaming a t  velocity V through the aperture, there being a jump 
2CV in the disturbance potential 4 - V x  between x = - 00 and x = + m. 

The problem sketched in figure 8 may be solved numerically without difficulty 
for an arbitrary aperture geometry (Tuck & Taylor 1970; Taylor 1971). The 
constant C is a unique property of the aperture geometry, described by Tuck & 
Taylor (1970) as a ' blockage ' coefficient? and computed for some similar problems 
by Newman (1969), Flagg & Newman (1971) and Taylor (1971). As an example, 

t C can also be related in an electrostatic analogy t o  the change in capacitance of 
a parallel-plate condenser, due to a deformation of the plates such that they follow the 
contours of the obstruction. 
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we give in the appendix an approximate evaluation of C for a small slit of width 
2a < D a t  a depth F, in an infinitesimally wide wall (figure 9). The result is 

D 
m (5.4) 

Now on matching fluxes through the aperture we obtain from (5.3) 

(5.5) V = - ik( 1 -p )  eigt = - ikr eid 

and on matching the jump in potential we obtain 

2CV = reid-(I+p)ei" t .  

Thus p + r  = 1 

and - 2Cikr = 7 - 1 -p.  

Hence 7 = 1/(1 +ikC)  

and 1.p = 1/(1+ k2C2). 

The result (5.10) is remarkably simple, and indicates the direct effect of the 
blockage coefficient C on the transmission. All curves of 1rI2 against k are similar 
in shape irrespective of the aperture geometry, decreasing from unity (perfect 
transmission) at zero frequency to  zero a t  infinite frequency, the decay rate 
being such that half of the incident energy is reflected at k = l/C. Since C is in 
most cases numerically large compared with the depth D (as is indicated by (5.4) 
for a/D or h/D small), transmission only occurs for wavelengths significantly 
greater than water depth D, confining attention to the strictly shallow-water 
range. 

Appendix 
To solve the problem illustrated by figure 9 (in which we have set V = 1) 

we make use of a Green's function for the channel - D < y < 0 (Taylor 1971), i.e. 

@ = g9 71 { log [4 sinh (& (z  + ih))  sinh (& (z - ih))]) , (A 1) 

where z = x + i y .  This function represents a source of strength 2 0  located at 
(0, - h) ,  satisfying @a, = 0 on y = 0, - D. It has the following properties: 

@++x as x - + $ o o ,  
CD -+ (D/n)  (logr+K) as r -+ 0, 

271 nh 
K = Iog- sin-. D D  where 

If 2a < D, the aperture in figure 5.3 can be represented by a source for x > 0 
and a sink for x < 0,  i.e. 

q5 = +(@++). (A 5 )  

In  view of (A 2 ) ,  this solution satisfies the correct boundary condition as x -+ 03 ; 
our task is to determine C. 
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The solution near the aperture is that for streaming flow through a gap in an 
inJinite wall, which can be obtained (see I) by a Joukowski mapping. Matching 
with (A 5), using (A 3), gives 

$+&:bogr+K+- as -+&moo. X ") D 2a 

However, a property of the aperture flow (I) is that if $ -+ & V(1og r + C,) as 
x -+ _+ m, then C, = -log +a. Thus 

K+nC/D = -1ogSa 

D n-a n-h 
C = --log-sin-. 

n D D  

The special case h = +D gives least blockage, i.e. 

and, using (A 4), 

D n-a 
7~ D '  

c = --log- 

This last result (A 9) is the limit as a/D tends to zero of an exact result of Sedov 
(see Newman 1969) for arbitrary a/D, namely 

D na 
C = --logsin-. 
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